PPCH™, is a pressure generator/controller/calibrator for liquid pressure operation from 1 to 200 MPa (150 to 30,000 psi). As with the rest of DHI’s PPC family of pressure controllers, the emphasis is on high end performance, minimizing measurement uncertainty and maintaining precise control over a very wide pressure range—in a compact and rugged instrument.

New, individually characterized, quartz reference pressure transducer (Q-RPT) modules increase precision and reduce measurement uncertainty. The AutoRange™ feature supports infinite ranging, automatically optimizing all aspects of operation for the exact range to be explored and taking pressure controller rangeability to a new level.

A unique pressure generation and control system provides unlimited, on-demand pressure, very high control resolution and 10:1 pressure control turndown. Four different control modes are included for maximum versatility.

Open architecture allows reference pressure measurement to be internal to or remote from the controller. If desired, the reference can be located at the test measurement point and independently removed for recalibration.

With all of this, PPCH opens new doors in automated high pressure hydraulic calibration and test applications.
1. Indication of pressure “Ready” (green) “Not Ready” (red) condition
2. Current target pressure
3. Unit of measure
4. Measurement mode (absolute, gauge)
5. Active Q-RPT module (up to four possible)
6. Remote activity indicator
7. Direct pressure control keys for slewing, jogging and venting pressure.
8. Current deviation from target control value
9. Control mode and status

1. Make automatic fluid head corrections for differences in height between PPCH and UUT.
2. Run automated test system prime and purge functions.
3. Run leak test function.
4. Automatically optimize measurement, control and safety features for the exact pressure range and mode of operation.
5. View and select active Q-RPT (from up to four in PPC/RPM system).
6. Set up and run calibration sequences automatically, with tolerance testing, based on UUT tolerance, range and measurement mode.
7. Select between saved, user defined range configurations.
8. Select pressure unit of measure.
9. Select measurement mode (absolute, gauge).
Quartz reference pressure transducer (Q-RPT) modules

PPCH’s outstanding pressure measurement specifications are made possible by DHI’s exclusive quartz reference pressure transducer (Q-RPT) modules.

Q-RPTs measure pressure by measuring the change in the natural oscillating frequency of a quartz crystal with pressure induced stress. To be qualified for use in a Q-RPT module, each transducer is individually evaluated and characterized using automated primary pressure standards. Only transducers exhibiting required levels of linearity, repeatability and stability are selected. A proprietary compensation model, derived from more than 15 years experience with thousands of quartz pressure transducers, is applied to optimize the metrological characteristics needed in a transfer standard.

PPCH can be delivered with a low cost utility sensor for applications in which the high precision and stability of a Q-RPT are not required.

Q-RPTs available for PPCH

<table>
<thead>
<tr>
<th>Q-RPT designation</th>
<th>SI version Maximum range Absolute/gauge (MPa)</th>
<th>US version Maximum range Absolute/gauge (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A200M1</td>
<td>200</td>
<td>30 000</td>
</tr>
<tr>
<td>A140M1</td>
<td>140</td>
<td>20 000</td>
</tr>
<tr>
<td>A100M1</td>
<td>100</td>
<td>15 000</td>
</tr>
<tr>
<td>A70M</td>
<td>70</td>
<td>10 000</td>
</tr>
<tr>
<td>A40M</td>
<td>40</td>
<td>6 000</td>
</tr>
<tr>
<td>A20M</td>
<td>20</td>
<td>3 000</td>
</tr>
</tbody>
</table>

1 Hi Q-RPT only, not available in Lo Q-RPT position.

Open architecture

A PPCH controller can be configured with up to four Q-RPT modules. These can be internal or external to the PPCH controller. External Q-RPTs are in DHI RPM4™ Reference Pressure Monitors. The RPM4’s Q-RPTs then become part of the PPCH system and are managed by PPCH. External Q-RPTs must be disconnected or protected by valves when PPCH is used at pressure greater than the external Q-RPT range.

Examples of possible PPCH system configurations include:

- A PPCH with one or two built-in Q-RPTs to act as a stand alone, “one box” controller/calibrator package.
- A PPCH with no internal Q-RPTs and an external Q-RPT to configure a system whose reference pressure measurement is remote from the controller. This configuration is ideal when it is advantageous for the reference to be removed from the system (e.g. for recalibration) while leaving the controller installed or to locate the reference measurement in closer proximity to the device or system under test.
- A PPCH with no built-in Q-RPTs to act as a low cost automated pressure setting and controlling device (for example to automate pressure control in a PG7000™ piston gauge system).

Infinite ranging™ and autoRange™

There’s a lot more to covering a wide range of test devices with a single pressure controller than “% of reading” measurement uncertainty. In addition to the necessary measurement uncertainty, PPCH offers the full pressure control and feature adaptability that are needed for true rangeability in test and calibration applications.

Infinite Ranging gives PPCH unprecedented versatility in adapting to a wide variety of devices to be tested. With the easy to use AutoRange function, a few simple key strokes or a single remote command string at the start of a test adapts every feature of the controller to optimize it for a specific range.
Reservoir, 4l to RPM4 connection 9 pin, 2 m for PPC3 COM1 or PPC3 Footswitch Q-RPTs (see RPM4 brochure)

PPCH 08-SP

PPCH 07

PPCH 06-01

PPCH 05-01

PPCH 04-02

Model

PPCH 04 – 02 SI units version

PPCH 05 – 01 CE mark

PPCH 06 – 01 Enclosure (for bench applications)

PPCH 07 Special calibration

PPCH 08-SP Special fluid

Accessories

RPM4 Reference pressure monitor for external Q-RPTs (see RPM4 brochure)

Footswitch Remote [ENTER] footswitch

RS-232 Cable 9 pin, 2 m for PPC3 COM1 or PPC3 to RPM4 connection

Reservoir, 41 External fluid reservoir

Pressure control

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic</td>
<td>Sets target pressure within hold limit and continuously adjusts pressure to</td>
</tr>
<tr>
<td>Static</td>
<td>remain at target value</td>
</tr>
<tr>
<td>Monotonic</td>
<td>Sets pressure to target, then maintains very slow ramp in same direction as</td>
</tr>
<tr>
<td></td>
<td>pressure increment</td>
</tr>
<tr>
<td>Ramp</td>
<td>Sets and maintains user specified rate of change of pressure</td>
</tr>
<tr>
<td>Piston gauge</td>
<td>PPCH is controlled by PG7302™ to automate piston gauge pressure control</td>
</tr>
<tr>
<td>Precision</td>
<td>± 0.003 % of Q-RPT span</td>
</tr>
<tr>
<td>Volume</td>
<td>0 cc to 100 cc (0 in³ to 6 in³), 50 cc (3 in³) optimum (operates in larger</td>
</tr>
<tr>
<td></td>
<td>volumes but pressure stabilizing time increases)</td>
</tr>
<tr>
<td>Slew rate</td>
<td>0 to full scale: 60 sec.</td>
</tr>
<tr>
<td>Dynamic mode</td>
<td>90 sec. to 120 sec. (Reduced by increasing hold limit or using monotonic</td>
</tr>
<tr>
<td></td>
<td>control)</td>
</tr>
<tr>
<td>Lowest</td>
<td>1 MPa (150 psi) (lower in optimum conditions and with PG7302)</td>
</tr>
</tbody>
</table>

General specifications

- **Power requirements**: 85 V to 264 V ac, 50/60 Hz, 75 W max
- **Normal operating temperature**: 15 °C to 35 °C (9 °F to 95 °F)
- **Vibration**: Meets MIL-T-28800D
- **Weight (typical)**: 50 kg approx (110 lb)
- **Dimensions (H x W x D)**: 30 cm x 52 cm x 50 cm (12 in x 20.5 in x 20 in) with enclosure 6U rack mount version
- **Communications ports**: RS-232 (COM1, COM2), IEEE-488.2
- **Operating modes**: Absolute, gauge
- **Pressure ranges**: Atmosphere to 200 MPa (30 000 psi)
- **Operating media**: Sebacate oil standard. Others optional (consult DHI)
- **Internal reservoir volume**: 250 cc (external unlimited)
- **Drive air supply**: 70 M, 140 M: 500 kPa (75 psi), 300 l/m (10 cfm), 450 l/m (15 cfm) 100 M, 200 M: 700 kPa (100 psi), 300 l/m (10 cfm), 450 l/m (15 cfm)
- **Pressure connections**: Drive air supply: 1/8 in. NPT F Test gas supply: DH500 (equivalent to AE F290C, HIP HF4)
- **Utility sensor precision/resolution**: ± 0.10 % span/0.001 % span
- **Drivers**: (8) 12 V, 1 A max total output
- **CE conformance**: Available, must be specified

Measured and delivered pressure (Q-RPT)

- **Warm up time**: 30 minute temperature stabilization recommended from cold power up
- **Resolution**: To 1 ppm, user adjustable
- **Calibration**: ASLA accredited calibration report included

Q-RPTs

<table>
<thead>
<tr>
<th>Q-RPTs</th>
<th>Less than A200M</th>
<th>A200M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision</td>
<td>± 0.012 % of reading</td>
<td>± 0.015 % of reading</td>
</tr>
<tr>
<td>Predicted one year stability</td>
<td>± 0.005 % of reading</td>
<td>± 0.005 % of reading</td>
</tr>
<tr>
<td>Measurement uncertainty</td>
<td>± 0.013 % of reading</td>
<td>± 0.018 % of reading</td>
</tr>
<tr>
<td>Delivered pressure uncertainty (dynamic control model)</td>
<td>± 0.016 % of reading</td>
<td>± 0.020 % of reading</td>
</tr>
</tbody>
</table>

1. Combined linearity, hysteresis and repeatability.
2. Predicted one year stability limit (k=2) assuming regular use of AutoZero function. AutoZero occurs automatically when vented in gauge mode, by comparison with a barometric reference in absolute mode. Absolute mode predicted one year stability without use of AutoZ is ± (0.005 % Q-RPT span + 0.005 % of reading).
3. Maximum deviation of the Q-RPT indication from the true value of applied pressure including precision, predicted one year stability, temperature effect and calibration uncertainty, combined and expanded (k=2) following the ISO "Guide to the Expression of Uncertainty in Measurement."
4. Maximum deviation of the PPCH controlled pressure from the true value including measurement uncertainty and dynamic control hold limit.
5. % of reading applies to 30 % to 100 % of Q-RPT span. Under 30 % of Q-RPT span, uncertainty is a constant value obtained by multiplying the % of reading value by 30 % of Q-RPT span.

Ordering information

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPCH 04 – 02</td>
<td>SI units version</td>
</tr>
<tr>
<td>PPCH 05 – 01</td>
<td>CE mark</td>
</tr>
<tr>
<td>PPCH 06 – 01</td>
<td>Enclosure (for bench applications)</td>
</tr>
<tr>
<td>PPCH 07</td>
<td>Special calibration</td>
</tr>
<tr>
<td>PPCH 08-SP</td>
<td>Special fluid</td>
</tr>
</tbody>
</table>

Accessories

- **RPM4**: Reference pressure monitor for external Q-RPTs (see RPM4 brochure)
- **Footswitch**: Remote [ENTER] footswitch
- **RS-232 Cable**: 9 pin, 2 m for PPC3 COM1 or PPC3 to RPM4 connection
- **Reservoir, 4l**: External fluid reservoir

Configuring a PPCH model number

1. Determine maximum controlled pressure required.
 - Select: PPCH-200M for 200 MPa (30 000 psi) PPCH-140M for 140 MPa (20 000 psi) PPCH-100M for 100 MPa (15 000 psi) PPCH-70M for 70 MPa (10 000 psi)
2. Decide whether Q-RPTs will be internal (built-in to PPCH) and/or external (in remote RPM4).
3. If Q-RPTs are to be built-in to the PPCH, select one or two Q-RPTs from the Q-RPTs table on page 3. Lo Q-RPT must be A70M or lower.
4. If Q-RPT(s) are to be external to the PPCH, configure an appropriate RPM4 using the RPM4 brochure. Note that the maximum pressure of the PPCH defines the maximum pressure of the PPCH system.

For a PPCH with no internal Q-RPT (utility sensor only)

- **PPCH-nnnM**: Indicates the PPCH controller’s designation (200M, 140M, 100M or 70M).

For a PPCH with one or two internal Q-RPTs

- **PPCH-nnnM AnnnMc1/AnnnMc2**: Indicates the PPCH controller’s designation.
 - **AnnnMc1**: Indicates the Hi RPT designation. c indicates class (s for Standard, u for utility sensor if there is no Hi Q-RPT).
 - **AnnnMc2**: Indicates the Lo Q-RPT designation. c indicates class (always s for Standard). Leave blank if there is no Lo Q-RPT.

Specifications

- **Warm up time**: 30 minute temperature stabilization recommended from cold power up
- **Resolution**: To 1 ppm, user adjustable
- **Calibration**: ASLA accredited calibration report included
- **Q-RPTs**: Less than A200M, A200M
- **Precision**: ± 0.012 % of reading, ± 0.015 % of reading
- **Predicted one year stability**: ± 0.005 % of reading, ± 0.005 % of reading
- **Measurement uncertainty**: ± 0.013 % of reading, ± 0.018 % of reading
- **Delivered pressure uncertainty [dynamic control model]**: ± 0.016 % of reading, ± 0.020 % of reading

1. Combined linearity, hysteresis and repeatability.
2. Predicted one year stability limit (k=2) assuming regular use of AutoZero function. AutoZero occurs automatically when vented in gauge mode, by comparison with a barometric reference in absolute mode. Absolute mode predicted one year stability without use of AutoZ is ± (0.005 % Q-RPT span + 0.005 % of reading).
3. Maximum deviation of the Q-RPT indication from the true value of applied pressure including precision, predicted one year stability, temperature effect and calibration uncertainty, combined and expanded (k=2) following the ISO "Guide to the Expression of Uncertainty in Measurement."
4. Maximum deviation of the PPCH controlled pressure from the true value including measurement uncertainty and dynamic control hold limit.
5. % of reading applies to 30 % to 100 % of Q-RPT span. Under 30 % of Q-RPT span, uncertainty is a constant value obtained by multiplying the % of reading value by 30 % of Q-RPT span.

©2010 Fluke Calibration. Specifications subject to change without notice. Printed in U.S.A. 7/2003 30311288 B-EN-N

Modification of this document is not permitted without written permission from Fluke Calibration.

Fluke. Keeping your world up and running.*